Descent for the K-Theory of Polynomial Rings.
This note summarizes a presentation made at the Third International Meeting on Integer Valued Polynomials and Problems in Commutative Algebra. All the work behind it is joint with Scott T. Chapman, and will appear in [2]. Let represent the ring of polynomials with rational coefficients which are integer-valued at integers. We determine criteria for two such polynomials to have the same image set on .
We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime the reduction modulo of the diagonal of a multivariate algebraic power series with integer coefficients is an algebraic power series of degree at most and height at most , where is an effective constant that only depends on...
Let be a Krull monoid with finite class group where every class contains some prime divisor. It is known that every set of lengths is an almost arithmetical multiprogression. We investigate which integers occur as differences of these progressions. In particular, we obtain upper bounds for the size of these differences. Then, we apply these results to show that, apart from one known exception, two elementary -groups have the same system of sets of lengths if and only if they are isomorphic.
We show that the dimer model on a bipartite graph on a torus gives rise to a quantum integrable system of special type, which we call acluster integrable system. The phase space of the classical system contains, as an open dense subset, the moduli space of line bundles with connections on the graph . The sum of Hamiltonians is essentially the partition function of the dimer model. We say that two such graphs and areequivalentif the Newton polygons of the corresponding partition functions...
We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove a Weierstrass-Hironaka division theorem for such subrings. Moreover, given an ideal ℐ of A and a series f in A we prove the existence in A of a unique remainder r modulo ℐ. As a consequence, we get a new proof of the noetherianity of A.
Ce travail est une étude analytique locale de l’anneau des séries de Dirichlet convergentes. Dans un premier temps, on établit des propriétés arithmétiques de cet anneau ; on prouve en particulier sa factorialité, que l’on déduit de théorèmes de division du type Weierstrass. Ensuite, on s’intéresse à des problèmes de composition. Soient et des séries de Dirichlet convergentes. On sait que avec est encore une série de Dirichlet convergente. On étudie la réciproque : sous les hypothèses que...