Jacobian criteria for complete intersections. The graded case.
We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form + terms of degree < m+n.
Let be a real lacunary formal power series, where εₙ = 0,1 and . It is known that the denominators Qₙ(X) of the convergents of its continued fraction expansion are polynomials with coefficients 0, ±1, and that the number of nonzero terms in Qₙ(X) is the nth term of the Stern-Brocot sequence. We show that replacing the index n by any 2-adic integer ω makes sense. We prove that is a polynomial if and only if ω ∈ ℤ. In all the other cases is an infinite formal power series; we discuss its algebraic...
Dans un corps fini, toute série formelle algébrique en une indéterminée est la diagonale d'une fraction rationnelle en deux indéterminées (Furstenberg 67). Dans cet article, nous donnons une nouvelle preuve de ce résultat, par des méthodes purement combinatoires.
For many domains R (including all Dedekind domains of characteristic 0 that are not fields or complete discrete valuation domains) we construct arbitrarily large superdecomposable R-algebras A that are at the same time E(R)-algebras. Here "superdecomposable" means that A admits no (directly) indecomposable R-algebra summands ≠ 0 and "E(R)-algebra" refers to the property that every R-endomorphism of the R-module, A is multiplication by an element of, A.
We construct and study length 2 variables of A[x,y] (A is a commutative ring). If A is an integral domain, we determine among these variables those which are tame. If A is a UFD, we prove that these variables are all stably tame. We apply this construction to show that some polynomials of A[x₁,...,xₙ] are variables using transfer.