Displaying 341 – 360 of 816

Showing per page

Jung's type theorem for polynomial transformations of ℂ²

Sławomir Kołodziej (1991)

Annales Polonici Mathematici

We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form x m y n + terms of degree < m+n.

Lacunary formal power series and the Stern-Brocot sequence

Jean-Paul Allouche, Michel Mendès France (2013)

Acta Arithmetica

Let F ( X ) = n 0 ( - 1 ) ε X - λ be a real lacunary formal power series, where εₙ = 0,1 and λ n + 1 / λ > 2 . It is known that the denominators Qₙ(X) of the convergents of its continued fraction expansion are polynomials with coefficients 0, ±1, and that the number of nonzero terms in Qₙ(X) is the nth term of the Stern-Brocot sequence. We show that replacing the index n by any 2-adic integer ω makes sense. We prove that Q ω ( X ) is a polynomial if and only if ω ∈ ℤ. In all the other cases Q ω ( X ) is an infinite formal power series; we discuss its algebraic...

Langage de Łukasiewicz et diagonales de séries formelles

Isabelle Fagnot (1996)

Journal de théorie des nombres de Bordeaux

Dans un corps fini, toute série formelle algébrique en une indéterminée est la diagonale d'une fraction rationnelle en deux indéterminées (Furstenberg 67). Dans cet article, nous donnons une nouvelle preuve de ce résultat, par des méthodes purement combinatoires.

Large superdecomposable E(R)-algebras

Laszlo Fuchs, Rüdiger Göbel (2005)

Fundamenta Mathematicae

For many domains R (including all Dedekind domains of characteristic 0 that are not fields or complete discrete valuation domains) we construct arbitrarily large superdecomposable R-algebras A that are at the same time E(R)-algebras. Here "superdecomposable" means that A admits no (directly) indecomposable R-algebra summands ≠ 0 and "E(R)-algebra" refers to the property that every R-endomorphism of the R-module, A is multiplication by an element of, A.

Length 2 variables of A[x,y] and transfer

Eric Edo, Stéphane Vénéreau (2001)

Annales Polonici Mathematici

We construct and study length 2 variables of A[x,y] (A is a commutative ring). If A is an integral domain, we determine among these variables those which are tame. If A is a UFD, we prove that these variables are all stably tame. We apply this construction to show that some polynomials of A[x₁,...,xₙ] are variables using transfer.

Currently displaying 341 – 360 of 816