Displaying 361 – 380 of 816

Showing per page

Lifting the field of norms

Laurent Berger (2014)

Journal de l’École polytechnique — Mathématiques

Let K be a finite extension of Q p . The field of norms of a p -adic Lie extension K / K is a local field of characteristic p which comes equipped with an action of Gal ( K / K ) . When can we lift this action to characteristic 0 , along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of ( ϕ , Γ ) -modules, and give a condition for the existence of certain types of lifts.

Linear gradings of polynomial algebras

Piotr Jędrzejewicz (2008)

Open Mathematics

Let k be a field, let G be a finite group. We describe linear G -gradings of the polynomial algebra k[x 1, ..., x m] such that the unit component is a polynomial k-algebra.

Local derivations in polynomial and power series rings

Janusz Zieliński (2002)

Colloquium Mathematicae

We give a description of all local derivations (in the Kadison sense) in the polynomial ring in one variable in characteristic two. Moreover, we describe all local derivations in the power series ring in one variable in any characteristic.

Matroids over a ring

Alex Fink, Luca Moci (2016)

Journal of the European Mathematical Society

We introduce the notion of a matroid M over a commutative ring R , assigning to every subset of the ground set an R -module according to some axioms. When R is a field, we recover matroids. When R = , and when R is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids, i.e. tropical linear spaces, respectively. More generally, whenever R is a Dedekind domain, we extend all the usual properties and operations holding for matroids (e.g., duality), and...

Maximal non valuation domains in an integral domain

Rahul Kumar, Atul Gaur (2020)

Czechoslovak Mathematical Journal

Let R be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring R of an integral domain S is called a maximal non valuation domain in S if R is not a valuation subring of S , and for any ring T such that R T S , T is a valuation subring of S . For a local domain S , the equivalence of an integrally closed maximal non VD in S and a maximal non local subring of S is established. The relation between dim ( R , S ) and the number...

Maximal non-Jaffard subrings of a field.

Mabrouk Ben Nasr, Noôman Jarboui (2000)

Publicacions Matemàtiques

A domain R is called a maximal non-Jaffard subring of a field L if R ⊂ L, R is not a Jaffard domain and each domain T such that R ⊂ T ⊆ L is Jaffard. We show that maximal non-Jaffard subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dimv R = dim R + 1. Further characterizations are given. Maximal non-universally catenarian subrings of their quotient fields are also studied. It is proved that this class of domains coincides with the previous class when R is integrally...

Currently displaying 361 – 380 of 816