The GCD property and irreducible quadratic polynomials.
It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form , where are homogeneous polynomials of degree 3 with real coefficients (or ), j = 1,...,n and H’(x) is a nilpotent matrix for each . We give another proof of Yu’s theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case , where . Note that the above inequality is not true when the coefficients of...
For each squarefree monomial ideal , we associate a simple finite graph by using the first linear syzygies of . The nodes of are the generators of , and two vertices and are adjacent if there exist variables such that . In the cases, where is a cycle or a tree, we show that has a linear resolution if and only if has linear quotients and if and only if is variable-decomposable. In addition, with the same assumption on , we characterize all squarefree monomial ideals with a...
We study , the ring of arithmetical functions with unitary convolution, giving an isomorphism between and a generalized power series ring on infinitely many variables, similar to the isomorphism of Cashwell-Everett [NumThe] between the ring of arithmetical functions with Dirichlet convolution and the power series ring on countably many variables. We topologize it with respect to a natural norm, and show that all ideals are quasi-finite. Some elementary results on factorization into atoms...
We describe the set of points over which a dominant polynomial map is not a local analytic covering. We show that this set is either empty or it is a uniruled hypersurface of degree bounded by .
We investigate an approach of Bass to study the Jacobian Conjecture via the degree of the inverse of a polynomial automorphism over an arbitrary ℚ-algebra.