Abelsche Galoiserweiterungen von R[X].
C. Greither, R. Haggenmüller (1982)
Manuscripta mathematica
Piotr Jaworski (1995)
Mathematische Zeitschrift
Noomen Jarboui, Ihsen Yengui (2002)
Colloquium Mathematicae
A domain R is called an absolutely S-domain (for short, AS-domain) if each domain T such that R ⊆ T ⊆ qf(R) is an S-domain. We show that R is an AS-domain if and only if for each valuation overring V of R and each height one prime ideal q of V, the extension R/(q ∩ R) ⊆ V/q is algebraic. A Noetherian domain R is an AS-domain if and only if dim (R) ≤ 1. In Section 2, we study a class of R-subalgebras of R[X] which share many spectral properties with the polynomial ring R[X] and which we call pseudo-polynomial...
Carl Faith (1990)
Publicacions Matemàtiques
In the article appeared in this same journal, vol. 33, 1 (1989) pp. 85-97, some statements in the proof of Example 3.4B got scrambled.
Kechagias, Nondas E. (2004)
Algebraic & Geometric Topology
J.B. Castillon, A. Micali (1978)
Manuscripta mathematica
L. Makar-Limanov (2001)
Annales Polonici Mathematici
In my talk I am going to remind you what is the AK-invariant and give examples of its usefulness. I shall also discuss basic conjectures about this invariant and some positive and negative results related to these conjectures.
Francesco Bottacin (1990)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Dochtermann, Anton, Engström, Alexander (2009)
The Electronic Journal of Combinatorics [electronic only]
Daniel Lazard (1977)
Bulletin de la Société Mathématique de France
B. Benzaghou (1970)
Bulletin de la Société Mathématique de France
Benali Benzaghou (1968/1969)
Séminaire Dubreil. Algèbre et théorie des nombres
Thierry Levasseur (1976/1977)
Groupe d'étude d'algèbre Groupe d'étude d'algèbre
U. Meinhold (1988)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
James Hein (1979)
Mathematica Scandinavica
Lawrence S. Levy (1972)
Mathematische Zeitschrift
Qing Li (2010)
Colloquium Mathematicae
This paper is a continuation of the investigation of almost Prüfer v-multiplication domains (APVMDs) begun by Li [Algebra Colloq., to appear]. We show that an integral domain D is an APVMD if and only if D is a locally APVMD and D is well behaved. We also prove that D is an APVMD if and only if the integral closure D̅ of D is a PVMD, D ⊆ D̅ is a root extension and D is t-linked under D̅. We introduce the notion of an almost t-splitting set. denotes the ring , where S is a multiplicatively closed...
C. Jayaram (2004)
Archivum Mathematicum
In this paper we establish some new characterizations for -rings and Noetherian -rings.
Demeyer, Frank, Kakakhail, Haniya (1999)
International Journal of Mathematics and Mathematical Sciences
Rüdiger Göbel, Lutz Strüngmann (2001)
Fundamenta Mathematicae
Let R be a unital commutative ring and A a unital R-algebra. We introduce the category of E(A,R)-modules which is a natural extension of the category of E-modules. The properties of E(A,R)-modules are studied; in particular we consider the subclass of E(R)-algebras. This subclass is of special interest since it coincides with the class of E-rings in the case R = ℤ. Assuming diamond ⋄, almost-free E(R)-algebras of cardinality κ are constructed for any regular non-weakly compact cardinal κ > ℵ...