Rational connectedness and Galois covers of the projective line.
If denotes the variety of irreducible plane curves of degree with exactly nodes as singularities, Diaz and Harris (1986) have conjectured that is a torsion group. In this note we study rational equivalence on some families of singular plane curves and we prove, in particular, that is a finite group, so that the conjecture holds for . Actually the order of is , the group being cyclic if is odd and the product of and a cyclic group of order if is even.
We prove a version of the Hilbert Irreducibility Theorem for linear algebraic groups. Given a connected linear algebraic group , an affine variety and a finite map , all defined over a finitely generated field of characteristic zero, Theorem 1.6 provides the natural necessary and sufficient condition under which the set contains a Zariski dense sub-semigroup ; namely, there must exist an unramified covering and a map such that . In the case , is the additive group, we reobtain the...
Let X be an irreducible nonsingular complex algebraic set and let K be a compact subset of X. We study algebraic properties of the ring of rational functions on X without poles in K. We give simple necessary conditions for this ring to be a regular ring or a unique factorization domain.
Let be a number field. Let be a finite set of places of containing all the archimedean ones. Let be the ring of -integers of . In the present paper we consider endomorphisms of of degree , defined over , with good reduction outside . We prove that there exist only finitely many such endomorphisms, up to conjugation by , admitting a periodic point in of order . Also, all but finitely many classes with a periodic point in of order are parametrized by an irreducible curve.
We derive a simple formula for the action of a finite crystallographic Coxeter group on the cohomology of its associated complex toric variety, using the method of counting rational points over finite fields, and the Hodge structure of the cohomology. Various applications are given, including the determination of the graded multiplicity of the reflection representation.