-cohomology and intersection homology of locally symmetric varieties, II
We prove an extension theorem of Ohsawa-Takegoshi type for line bundle sections on a subvariety of general codimension in a normal projective variety. Our method of proof gives conditions to be satisfied for such extension in a general setting, while such conditions are satisfied when the subvariety is given by an appropriate multiplier ideal sheaf.
La conjecture de Birch et Swinnerton-Dyer prédit que l’ordre du zéro en de la fonction d’une courbe elliptique définie sur est égal au rang du groupe de ses points rationnels. On sait démontrer cette conjecture si ou , mais on n’a aucun résultat reliant et si . Nous expliquerons comment Kato démontre que la fonction -adique attachée à a, en , un...
Une courbe projective et lisse de genre , non hyperelliptique, admet un plongement canonique dans un espace projectif . Un résultat classique affirme que l’idéal gradué des équations de dans est engendré par ses éléments de degré , sauf si admet certains systèmes linéaires très particuliers. Mark Green en a proposé il y a vingt ans une vaste généralisation, qui décrit la résolution minimale de en fonction de l’existence de systèmes linéaires spéciaux sur . Claire Voisin vient de...