Bloch-Ogus properties for topological cycle theory
Soit un polynôme en deux variables, de degré et à coefficients entiers dans pour . Alors le nombre de zéros rationnels de est soit infini soit plus petit que . Nous montrons aussi une version plus générale sur les corps de nombres.
Nous montrons dans cet article des bornes pour la régularité de Castelnuovo-Mumford d’un schéma admettant des singularités, en fonction des degrés des équations définissant le schéma, de sa dimension et de la dimension de son lieu singulier. Dans le cas où les singularités sont isolées, nous améliorons la borne fournie par Chardin et Ulrich et dans le cas général, nous établissons une borne doublement exponentielle en la dimension du lieu singulier.
It is proved that there are only finitely many families of codimension two subvarieties not of general type in Q6.
Let X ⊂ P6 be a smooth irreducible projective threefold, and d its degree. In this paper we prove that there exists a constant β such that for all X containing a smooth ruled surface as hyperplane section and not contained in a fourfold of degree less than or equal to 15, d ≤ β. Under some more restrictive hypothesis we prove an analogous result for threefolds containing a smooth ruled surface as hyperplane section and contained in a fourfold of degree less than or equal to 15.
This work concerns bounds for Chern classes of holomorphic semistable and stable vector bundles on . Non-negative polynomials in Chern classes are constructed for 4-vector bundles on and a generalization of the presented method to r-bundles on is given. At the end of this paper the construction of bundles from complete intersection is introduced to see how rough the estimates we obtain are.