Brauer groups of abelian schemes
We give a one-parameter family of Bridgeland stability conditions on the derived category of a smooth projective complex surface and describe “wall-crossing behavior” for objects with the same invariants as when generates Pic and . If, in addition, is a or Abelian surface, we use this description to construct a sequence of fine moduli spaces of Bridgeland-stable objects via Mukai flops and generalized elementary modifications of the universal coherent sheaf. We also discover a natural...
We take up the study of the Brill-Noether loci , where is a smooth projective variety of dimension , , and is an integer. By studying the infinitesimal structure of these loci and the Petri map (defined in analogy with the case of curves), we obtain lower bounds for , where is a divisor that moves linearly on a smooth projective variety of maximal Albanese dimension. In this way we sharpen the results of [Xi] and we generalize them to dimension . In the -dimensional case we prove an...
We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group over a suitable non-Archimedean field we define a map from the Bruhat-Tits building to the Berkovich analytic space associated with . Composing this map with the projection of to its flag varieties, we define a family of compactifications of . This generalizes results by Berkovich in the case of split groups. Moreover,...
We announce some results on compactifying moduli spaces of rank 2 vector bundles on surfaces by spaces of vector bundles on trees of surfaces. This is thought as an algebraic counterpart of the so-called bubbling of vector bundles and connections in differential geometry. The new moduli spaces are algebraic spaces arising as quotients by group actions according to a result of Kollár. As an example, the compactification of the space of stable rank 2 vector bundles with Chern classes c 1 = 0, c 1...