Spectra of differential rings
We start with a small paradigm shift about group representations, namely the observation that restriction to a subgroup can be understood as an extension-of-scalars. We deduce that, given a group , the derived and the stable categories of representations of a subgroup can be constructed out of the corresponding category for by a purely triangulated-categorical construction, analogous to étale extension in algebraic geometry. In the case of finite groups, we then use descent methods to investigate...
Le but de cet article est de généraliser la théorie des foncteurs lisses de Grothendieck afin d’inclure dans ce cadre la théorie des catégories fibrées. On obtient en particulier une nouvelle caractérisation des catégories fibrées.
Using the flatification by blow-up result of Raynaud and Gruson, we obtain new results for submersive and subtrusive morphisms. We show that universally subtrusive morphisms, and in particular universally open morphisms, are morphisms of effective descent for the fibered category of étale morphisms. Our results extend and supplement previous treatments on submersive morphisms by Grothendieck, Picavet and Voevodsky. Applications include the universality of geometric quotients and the elimination...
Soit l’algèbre des fonctions sur engendrée par les fonctions polynomiales et les exponentielles de formes linéaires. La partie de appartient à si et seulement s’il existe et dans pour lesquels est l’image par la projection canonique de sur , de l’ensemble des zéros de . Soit le plus petit sous-ensemble de parties de qui contient , l’adhérence de ses éléments et les images par la projection canonique de qui contient , l’adhérence de ses éléments et les images par la...
Afin de disposer des opérations cohomologiques aussi souples que possible pour la cohomologie de de Rham -adique, le but principal de ce mémoire est de résoudre intrinsèquement du point de vue cohomologique le problème des relèvements des schémas lisses et de leurs morphismes de la caractéristique à la caractéristique nulle ce qui a été l’une des difficultés centrales de la théorie de la cohomologie de de Rham des schémas algébriques en caractéristique positive depuis le début. Nous montrons...
Gabber a déduit son théorème d’indépendance de de la cohomologie d’intersection d’un résultat général de stabilité sur les corps finis. Dans cet article, nous démontrons un analogue sur les corps locaux de ce résultat général. Plus précisément, nous introduisons une notion d’indépendance de pour les systèmes de complexes de faisceaux -adiques sur les schémas de type fini sur un corps local équivariants sous des groupes finis et nous établissons sa stabilité par les six opérations de Grothendieck...