Calcul du nombre de cusps dans la déformation semi-universelle d'une singularité isolée d'hypersurface complexe
Lorsqu’un tore agit sur une variété algébrique complexe munie de la topologie transcendante, nous définissons la classe d’Euler -équivariante d’un point fixe isolé , qu’il soit lisse ou non. Cette classe est une fraction rationnelle à un nombre fini de variables et lorsque est rationnellement lisse dans , c’est un polynôme qui s’identifie canoniquement à la classe d’Euler équivariante usuelle, mais, réciproquement, lorsque la classe d’Euler équivariante est polynomiale, il n’est pas toujours...
We classify the affine varieties of dimension at most 4 which occur as orbit closures with an invariant point in varieties of representations of quivers. Moreover, we show that they are normal and Cohen-Macaulay.
This text has two parts. The first one is the essentially unmodified text of our 1973-74 seminar on integral dependence in complex analytic geometry at the Ecole Polytechnique with J-J. Risler’s appendix on the Łojasiewicz exponents in the real-analytic framework. The second part is a short survey of more recent results directly related to the content of the seminar.The first part begins with the definition and elementary properties of the order function associated to an ideal of a reduced analytic...