Displaying 21 – 40 of 67

Showing per page

Singularities of hyperdeterminants

Jerzy Weyman, Andrei Zelevinsky (1996)

Annales de l'institut Fourier

We study the singular locus of the variety of degenerate hypermatrices of an arbitrary format. Our main result is a classification of irreducible components of the singular locus. Equivalently, we classify irreducible components of the singular locus for the projectively dual variety of a product of several projective spaces taken in the Segre embedding.

Singularities on complete algebraic varieties

Fedor Bogomolov, Paolo Cascini, Bruno Oliveira (2006)

Open Mathematics

We prove that any finite set of n-dimensional isolated algebraic singularities can be afforded on a simply connected projective variety.

Smooth double subvarieties on singular varieties, III

M. R. Gonzalez-Dorrego (2016)

Banach Center Publications

Let k be an algebraically closed field, char k = 0. Let C be an irreducible nonsingular curve such that rC = S ∩ F, r ∈ ℕ, where S and F are two surfaces and all the singularities of F are of the form z ³ = x 3 s - y 3 s , s ∈ ℕ. We prove that C can never pass through such kind of singularities of a surface, unless r = 3a, a ∈ ℕ. We study multiplicity-r structures on varieties r ∈ ℕ. Let Z be a reduced irreducible nonsingular (n-1)-dimensional variety such that rZ = X ∩ F, where X is a normal n-fold, F is a (N-1)-fold...

Smoothing of rational m-ropes

Edoardo Ballico, Elizabeth Gasparim, Thomas Köppe (2009)

Open Mathematics

In a recent paper, Gallego, González and Purnaprajna showed that rational 3-ropes can be smoothed. We generalise their proof, and obtain smoothability of rational m-ropes for m ≥ 3.

Currently displaying 21 – 40 of 67