Some Elementary Theorem about Algebraic Cycles on Abelian Varieties.
For a smooth complex projective variety, the rank of the Néron-Severi group is bounded by the Hodge number . Varieties with have interesting properties, but are rather sparse, particularly in dimension . We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.
The goal of this paper is at least two-fold. First we attempt to give a survey of some recent (and developed up to the time of the Banach Center workshop Parameter Spaces, February '94) applications of the theory of symmetric polynomials and divided differences to intersection theory. Secondly, taking this opportunity, we complement the story by either presenting some new proofs of older results (and this takes place usually in the Appendices to the present paper) or providing some new results which...
We prove that Bloch’s conjecture is true for surfaces with obtained as -sets of a section of a very ample vector bundle on a variety with “trivial” Chow groups. We get a similar result in presence of a finite group action, showing that if a projector of the group acts as on holomorphic -forms of , then it acts as on -cycles of degree of . In higher dimension, we also prove a similar but conditional result showing that the generalized Hodge conjecture for general implies the...
Let be a curve over a field with a rational point . We define a canonical cycle . Suppose that is a number field and that has semi-stable reduction over the integers of with fiber components non-singular. We construct a regular model of and show that the height pairing is well defined where and are correspondences. The paper ends with a brief discussion of heights and -functions in the case that is a modular curve.
For a proper local embedding between two Deligne-Mumford stacks and , we find, under certain mild conditions, a new (possibly non-separated) Deligne-Mumford stack , with an etale, surjective and universally closed map to the target , and whose fiber product with the image of the local embedding is a finite union of stacks with corresponding etale, surjective and universally closed maps to . Moreover, a natural set of weights on the substacks of allows the construction of a universally closed...