On the Degree of the Discriminant Locus of a Smooth Sectional Surface of a (n + 2)-fold with Nonnegative Kodaria Dimension.
Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety, then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.
In this paper we generalize Zak’s theorems on tangencies and on linear normality as well as Zak’s definition and classification of Severi varieties. In particular we find sharp lower bounds for the dimension of higher secant varieties of a given variety under suitable regularity assumptions on , and we classify varieties for which the bound is attained.
We prove that for integers n,d,g such that n ≥ 4, g ≥ 2n and d ≥ 2g + 3n + 1, the general (smooth) curve C in with degree d and genus g has a stable normal bundle .