Page 1 Next

Displaying 1 – 20 of 52

Showing per page

Effective nonvanishing, effective global generation

Mark Andrea A. De Cataldo (1998)

Annales de l'institut Fourier

We prove a multiple-points higher-jets nonvanishing theorem by the use of local Seshadri constants. Applications are given to effectivity problems such as constructing rational and birational maps into Grassmannians, and the global generation of vector bundles.

Effective Nullstellensatz for arbitrary ideals

János Kollár (1999)

Journal of the European Mathematical Society

Let f i be polynomials in n variables without a common zero. Hilbert’s Nullstellensatz says that there are polynomials g i such that g i f i = 1 . The effective versions of this result bound the degrees of the g i in terms of the degrees of the f j . The aim of this paper is to generalize this to the case when the f i are replaced by arbitrary ideals. Applications to the Bézout theorem, to Łojasiewicz–type inequalities and to deformation theory are also discussed.

Elementary introduction to representable functors and Hilbert schemes

Stein Strømme (1996)

Banach Center Publications

The purpose of this paper is to define and prove the existence of the Hilbert scheme. This was originally done by Grothendieck in [4]. A simplified proof was given by Mumford [11], and we will basically follow that proof, with small modifications.

Currently displaying 1 – 20 of 52

Page 1 Next