Faisceaux amples et très amples
A great deal of recent activity has centered on the question of whether, for a given Hilbert function, there can fail to be a unique minimum set of graded Betti numbers, and this is closely related to the question of whether the associated Hilbert scheme is irreducible or not. We give a broad class of Hilbert functions for which we show that there is no minimum, and hence that the associated Hilbert sheme is reducible. Furthermore, we show that the Weak Lefschetz Property holds for the general element...
O’Grady showed that certain special sextics in called EPW sextics admit smooth double covers with a holomorphic symplectic structure. We propose another perspective on these symplectic manifolds, by showing that they can be constructed from the Hilbert schemes of conics on Fano fourfolds of degree ten. As applications, we construct families of Lagrangian surfaces in these symplectic fourfolds, and related integrable systems whose fibers are intermediate Jacobians.
The product of two Schubert classes in the quantum -theory ring of a homogeneous space is a formal power series with coefficients in the Grothendieck ring of algebraic vector bundles on . We show that if is cominuscule, then this power series has only finitely many non-zero terms. The proof is based on a geometric study of boundary Gromov-Witten varieties in the Kontsevich moduli space, consisting of stable maps to that take the marked points to general Schubert varieties and whose domains...
We obtain finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves over perfect fields. For example, if k is finitely generated over ℚ and X → C is a quadric fibration of odd relative dimension at least 11, then CH i(X) is finitely generated for i ≤ 4.
To any adelic invertible sheaf on a projective arithmetic variety and any regular algebraic point of the arithmetic variety, we associate a function defined on which measures the separation of jets on this algebraic point by the “small” sections of the adelic invertible sheaf. This function will be used to study the arithmetic local positivity.
Introduite par Witt en 1937, la théorie des formes quadratiques sur un corps joue un rôle central dans la démonstration des conjectures de Milnor par Voevodsky via les travaux pionniers de Rost qui y interviennent. Réciproquement, les méthodes de Rost et Voevodsky utilisant la théorie des motifs et les opérations de Steenrod motiviques révolutionnent la théorie des formes quadratiques et ont conduit à la démonstration de résultats de base qui semblaient auparavant inaccessibles. On expliquera notamment...