Improper intersection of analytic curves.
Page 1 Next
Krasiński, Tadeusz (2001)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Krzysztof Jan Nowak (2001)
Jean Giraud (1982)
Annales de l'institut Fourier
Let be a desingularization of a normal surface . The group Pic is provided with an order relation , defined by . for any effective exceptional divisor . Comparing to the usual order relation we define the ceiling of which is an exceptional divisor. This notion allows us to improve the usual vanishing theorem and we deduce from it a numerical criterion for rationality and a genus formula for a curve on a normal surface; the difficulty lies in the case of a Weil divisor which is not a Cartier...
James Carlson, Mark Green, Phillip Griffiths, Joe Harris (1983)
Compositio Mathematica
Phillip Griffiths, Joe Harris (1983)
Compositio Mathematica
Phillip A. Griffiths (1983)
Compositio Mathematica
Igor Dolgachev (1982/1983)
Séminaire Bourbaki
P. Deligne (1984)
Inventiones mathematicae
G. Lusztig (1984)
Inventiones mathematicae
Joseph Steenbrink (1977)
Compositio Mathematica
Mark. Goresky, R. MacPherson (1983)
Inventiones mathematicae
K. Vilonen (1985)
Inventiones mathematicae
Paul Roberts (1985)
Publications mathématiques et informatique de Rennes
Steven Zucker, David A. Cox (1979)
Inventiones mathematicae
Tadeusz Krasiński, Krzysztof Jan Nowak (2003)
Annales Polonici Mathematici
We give a relation between two theories of improper intersections, of Tworzewski and of Stückrad-Vogel, for the case of algebraic curves. Given two arbitrary quasiprojective curves V₁,V₂, the intersection cycle V₁ ∙ V₂ in the sense of Tworzewski turns out to be the rational part of the Vogel cycle v(V₁,V₂). We also give short proofs of two known effective formulae for the intersection cycle V₁ ∙ V₂ in terms of local parametrizations of the curves.
Alberto Collino, William Fulton (1989)
Mémoires de la Société Mathématique de France
Ewa Cygan (1998)
Annales Polonici Mathematici
We consider the intersection multiplicity of analytic sets in the general situation. We prove that it is a regular separation exponent for complex analytic sets and so it estimates the Łojasiewicz exponent. We also give some geometric properties of proper projections of analytic sets.
Piotr Tworzewski (1995)
Annales Polonici Mathematici
We present a construction of an intersection product of arbitrary complex analytic cycles based on a pointwise defined intersection multiplicity.
Sean Keel (1990)
Manuscripta mathematica
Angelo Vistoli (1989)
Inventiones mathematicae
Page 1 Next