Tableaux de Young et fonctions de Schur-Littlewood
In this paper we extend the arithmetic Grothendieck-Riemann-Roch Theorem to projective morphisms between arithmetic varieties that are not necessarily smooth over the complex numbers. The main ingredient of this extension is the theory of generalized holomorphic analytic torsion classes previously developed by the authors.
Let be a commutative -algebra where is a ring containing the rationals. We prove the existence of a Chern character for Lie-Rinehart algebras over A with values in the Lie-Rinehart cohomology of L which is independent of choice of a -connection. Our result generalizes the classical Chern character from the -theory of to the algebraic De Rham cohomology.