Displaying 141 – 160 of 779

Showing per page

Contractions of smooth varieties. II. Computations and applications

Marco Andreatta, Jarosław A. Wiśniewski (1998)

Bollettino dell'Unione Matematica Italiana

Una contrazione su una varietà proiettiva liscia X è data da una mappa φ : X Z propria, suriettiva e a fibre connesse in una varietà irriducibile normale Z . La contrazione si dice di Fano-Mori se inoltre - K X è φ -ampio. Nel lavoro, naturale seguito e completamento delle ricerche introdotte in [A-W3], si studiano diversi aspetti delle contrazioni di Fano-Mori attraverso esempi (capitolo 1) e teoremi di struttura (capitoli 3 e 4). Si discutono anche alcune applicazioni allo studio di morfismi birazionali propri...

Correspondence homomorphisms for singular varieties

Eric M. Friedlander, Barry Mazur (1994)

Annales de l'institut Fourier

We study certain kinds of geometric correspondences between (possibly singular) algebraic varieties and we obtain comparison results regarding natural filtrations on the homology of varieties.

Correspondencias divisoriales entre esquemas relativos.

Daniel Hernández Ruipérez (1981)

Revista Matemática Hispanoamericana

En este trabajo se estudian las correspondencias divisoriales entre dos esquemas relativos. Una correspondencia divisorial es una correspondencia algebraica entre los puntos de un esquema X y las clases de equivalencia lineal de divisores de otro esquema Y. Se consideran correspondencias triviales las que asignan a cada punto toda la variedad y las inversas de éstas. Por tanto las correspondencias divisoriales módulo las triviales son los divisores del producto módulo, módulo los divisores que provienen...

Cubic differential forms and the group law on the Jacobian of a real algebraic curve

J. Huisman (2003)

Bollettino dell'Unione Matematica Italiana

In an earlier paper [6], we gave an explicit geometric description of the group law on the neutral component of the set of real points of the Jacobian of a smooth quartic curve. Here, we generalize this description to curves of higher genus. We get a description of the group law on the neutral component of the set of real points of the Jacobian of a smooth curve in terms of cubic differential forms. When applied to canonical curves, one gets an explicit geometric description of this group law by...

Cycle exceptionnel de l’éclatement d’un idéal définissant l’origine de C n et applications

Alain Hénaut (1987)

Annales de l'institut Fourier

Soit I un idéal de C { z 1 , ... , z n } définissant l’origine de C n . On donne une méthode explicite pour déterminer, après un choix convenable des générateurs de I = ( f 1 , ... , f n + p ) , le cycle de P n + p - 1 sous-jacent à la fibre exceptionnelle de l’éclatement de C n relativement à I . On étudie également l’éclatement d’une famille équimultiple d’idéaux ponctuels paramétrée par un germe d’espace analytique complexe réduit.

Cycles évanescents d’une fonction de Liouville de type f 1 λ 1 . . . f p λ p

Emmanuel Paul (1995)

Annales de l'institut Fourier

On construit un transport transverse aux fibres d’une fonction multivaluée de type f 1 λ 1 ... f p λ p ( λ i complexes), à l’origine de 2 . Ce transport est unique à isotopie près. On en déduit l’existence de voisinages réguliers dans lesquels les fibres sont toutes C difféomorphes (voire dans un cas quasi-homogène, analytiquement difféomorphes). On obtient également une généralisation de la notion de monodromie. On calcule enfin l’homologie évanescente de la fibre-type, en précisant le gradué qui lui est associé.

Currently displaying 141 – 160 of 779