The Bauer Group of a Rational Surface.
Let and be smooth and projective varieties over a field finitely generated over , and let and be the varieties over an algebraic closure of obtained from and , respectively, by extension of the ground field. We show that the Galois invariant subgroup of Br Br( has finite index in the Galois invariant subgroup of Br. This implies that the cokernel of the natural map Br Br Br is finite when is a number field. In this case we prove that the Brauer–Manin set of the product of...
Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M C (r; L) be the coarse moduli space of semistable vector bundles E over C of rank r with ∧r E = L. We show that the Brauer group of any desingularization of M C(r; L) is trivial.
Dans leur démonstration de la correspondance de Drinfeld-Langlands, Frenkel, Gaitsgory et Vilonen utilisent la transformation de Fourier géométrique, ce qui les oblige à travailler soit avec les faisceaux -adiques en caractéristique , soit avec les -Modules en caractéristique . En fait, ils n’utilisent cette transformation de Fourier géométrique que pour des faisceaux homogènes pour lesquels on s’attend à avoir une transformation de Fourier sur . L’objet de cette note est de proposer une telle...