Cohomology of local systems on the complement of hyperplanes (Erratum).
H. Esnault, V. Schechtmann (1993)
Inventiones mathematicae
Robin Hartshorne (1971)
Compositio Mathematica
de Shalit, Ehud (2007)
Documenta Mathematica
Peter Orlik, Louis Solomon (1980)
Inventiones mathematicae
F. Baldassarri (1988)
Mathematische Annalen
Francesco Baldassarri (1984/1985)
Groupe de travail d'analyse ultramétrique
Yves André (2004)
Journal de Théorie des Nombres de Bordeaux
We present a panorama of comparison theorems between algebraic and analytic De Rham cohomology with algebraic connections as coefficients. These theorems have played an important role in the development of -module theory, in particular in the study of their ramification properties (irregularity...). In part I, we concentrate on the case of regular coefficients and sketch the new proof of these theorems given by F. Baldassarri and the author, which is of elementary nature and unifies the complex...
M. Rapoport (1971/1972)
Inventiones mathematicae
Philippe Du Bois (1981)
Bulletin de la Société Mathématique de France
Jean-Yves Etesse (1988)
Compositio Mathematica
Luc Illusie (1979)
Annales scientifiques de l'École Normale Supérieure
Fouad El Zein (1978)
Mémoires de la Société Mathématique de France
Aleksandrov, A.G., Tanabé, S. (1996)
Georgian Mathematical Journal
Pierre Deligne (1980)
Mémoires de la Société Mathématique de France
A. Andreotti, F. Norguet (1971)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Vladimir Dotsenko, Sergey Shadrin, Bruno Vallette (2015)
Journal of the European Mathematical Society
We endow the de Rham cohomology of any Poisson or Jacobi manifold with a natural homotopy Frobenius manifold structure. This result relies on a minimal model theorem for multicomplexes and a new kind of a Hodge degeneration condition.
Marius Van der Put (1990)
Compositio Mathematica
Matthew Satriano (2012)
Annales de l’institut Fourier
We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic (as defined by Abramovich, Olsson, and Vistoli) which lift mod degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.
Langer, Andreas, Zink, Thomas (2007)
Documenta Mathematica
Michele Torielli (2013)
Annales de l’institut Fourier
We study deformations of free and linear free divisors. We introduce a complex similar to the de Rham complex whose cohomology calculates the deformation spaces. This cohomology turns out to be zero for all reductive linear free divisors and to be constructible for Koszul free divisors and weighted homogeneous free divisors.