Displaying 281 – 300 of 397

Showing per page

Rational points on a subanalytic surface

Jonathan Pila (2005)

Annales de l’institut Fourier

Let X n be a compact subanalytic surface. This paper shows that, in a suitable sense, there are very few rational points of X that do not lie on some connected semialgebraic curve contained in X .

Rational points on curves

Michael Stoll (2011)

Journal de Théorie des Nombres de Bordeaux

This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009.We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve  C over  . The focus is on practical aspects of this problem in the case that the genus of  C is at least  2 , and therefore the set of rational points is finite.

Rational points on X 0 + ( N ) and quadratic -curves

Steven D. Galbraith (2002)

Journal de théorie des nombres de Bordeaux

The rational points on X 0 ( N ) / W N in the case where N is a composite number are considered. A computational study of some of the cases not covered by the results of Momose is given. Exceptional rational points are found in the cases N = 91 and N = 125 and the j -invariants of the corresponding quadratic -curves are exhibited.

Rational torsion points on Jacobians of modular curves

Hwajong Yoo (2016)

Acta Arithmetica

Let p be a prime greater than 3. Consider the modular curve X₀(3p) over ℚ and its Jacobian variety J₀(3p) over ℚ. Let (3p) and (3p) be the group of rational torsion points on J₀(3p) and the cuspidal group of J₀(3p), respectively. We prove that the 3-primary subgroups of (3p) and (3p) coincide unless p ≡ 1 (mod 9) and 3 ( p - 1 ) / 3 1 ( m o d p ) .

Currently displaying 281 – 300 of 397