Previous Page 2

Displaying 21 – 40 of 40

Showing per page

Bicyclotomic polynomials and impossible intersections

David Masser, Umberto Zannier (2013)

Journal de Théorie des Nombres de Bordeaux

In a recent paper we proved that there are at most finitely many complex numbers t 0 , 1 such that the points ( 2 , 2 ( 2 - t ) ) and ( 3 , 6 ( 3 - t ) ) are both torsion on the Legendre elliptic curve defined by y 2 = x ( x - 1 ) ( x - t ) . In a sequel we gave a generalization to any two points with coordinates algebraic over the field Q ( t ) and even over C ( t ) . Here we reconsider the special case ( u , u ( u - 1 ) ( u - t ) ) and ( v , v ( v - 1 ) ( v - t ) ) with complex numbers u and v .

Biliaisons élémentaires en codimension 2

Mireille Martin-Deschamps (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Un théorème de Strano montre que si une courbe gauche localement Cohen-Macaulay n’est pas minimale dans sa classe de biliaison, elle admet une biliaison élémentaire strictement décroissante. R. Hartshorne a récemment donné une nouvelle preuve de ce résultat en le plaçant dans un contexte plus général. Dans cet article on apporte une précision, en utilisant les techniques introduites par Hartshorne : on montre que si un sous-schéma de codimension 2 localement Cohen-Macaulay de N n’est pas minimal...

Blaschke product generated covering surfaces

Ilie Barza, Dorin Ghisa (2009)

Mathematica Bohemica

It is known that, under very general conditions, Blaschke products generate branched covering surfaces of the Riemann sphere. We are presenting here a method of finding fundamental domains of such coverings and we are studying the corresponding groups of covering transformations.

Bornes pour la régularité de Castelnuovo-Mumford des schémas non lisses

Amadou Lamine Fall (2009)

Annales de l’institut Fourier

Nous montrons dans cet article des bornes pour la régularité de Castelnuovo-Mumford d’un schéma admettant des singularités, en fonction des degrés des équations définissant le schéma, de sa dimension et de la dimension de son lieu singulier. Dans le cas où les singularités sont isolées, nous améliorons la borne fournie par Chardin et Ulrich et dans le cas général, nous établissons une borne doublement exponentielle en la dimension du lieu singulier.

Bounds on multisecant lines.

Scott Nollet (1998)

Collectanea Mathematica

The purpose of this paper is twofold. First, we give an upper bound on the order of a multisecant line to an integral arithmetically Cohen-Macaulay subscheme in Pn of codimension two in terms of the Hilbert function. Secondly, we give an explicit description of the singular locus of the blow up of an arbitrary local ring at a complete intersection ideal. This description is used to refine a standard linking theorem. These results are tied together by the construction of sharp examples for the bound,...

Braid Monodromy of Algebraic Curves

José Ignacio Cogolludo-Agustín (2011)

Annales mathématiques Blaise Pascal

These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.The main classical results are stated...

Braids in Pau – An Introduction

Enrique Artal Bartolo, Vincent Florens (2011)

Annales mathématiques Blaise Pascal

In this work, we describe the historic links between the study of 3 -dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.

Branching data for algebraic functions and representability by radicals

Y. Burda, A. Khovanskii (2011)

Banach Center Publications

The branching data of an algebraic function is a list of orders of local monodromies around branching points. We present branching data that ensure that the algebraic functions having them are representable by radicals. This paper is a review of recent work by the authors and of closely related classical work by Ritt.

Brill–Noether loci for divisors on irregular varieties

Margarida Mendes Lopes, Rita Pardini, Pietro Pirola (2014)

Journal of the European Mathematical Society

We take up the study of the Brill-Noether loci W r ( L , X ) : = { η Pic 0 ( X ) | h 0 ( L η ) r + 1 } , where X is a smooth projective variety of dimension > 1 , L Pic ( X ) , and r 0 is an integer. By studying the infinitesimal structure of these loci and the Petri map (defined in analogy with the case of curves), we obtain lower bounds for h 0 ( K D ) , where D is a divisor that moves linearly on a smooth projective variety X of maximal Albanese dimension. In this way we sharpen the results of [Xi] and we generalize them to dimension > 2 . In the 2 -dimensional case we prove an...

Currently displaying 21 – 40 of 40

Previous Page 2