Displaying 1841 – 1860 of 2340

Showing per page

The Brauer group of desingularization of moduli spaces of vector bundles over a curve

Indranil Biswas, Amit Hogadi, Yogish Holla (2012)

Open Mathematics

Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M C (r; L) be the coarse moduli space of semistable vector bundles E over C of rank r with ∧r E = L. We show that the Brauer group of any desingularization of M C(r; L) is trivial.

The Brauer–Manin obstruction for curves having split Jacobians

Samir Siksek (2004)

Journal de Théorie des Nombres de Bordeaux

Let X 𝒜 be a non-constant morphism from a curve X to an abelian variety 𝒜 , all defined over a number field k . Suppose that X is a counterexample to the Hasse principle. We give sufficient conditions for the failure of the Hasse principle on X to be accounted for by the Brauer–Manin obstruction. These sufficiency conditions are slightly stronger than assuming that 𝒜 ( k ) and Ш ( 𝒜 / k ) are finite.

The Briançon-Skoda number of analytic irreducible planar curves

Jacob Sznajdman (2014)

Annales de l’institut Fourier

The Briançon-Skoda number of a ring R is defined as the smallest integer k, such that for any ideal I R and l 1 , the integral closure of I k + l - 1 is contained in I l . We compute the Briançon-Skoda number of the local ring of any analytic irreducible planar curve in terms of its Puiseux characteristics. It turns out that this number is closely related to the Milnor number.

The class group of a one-dimensional affinoid space

Marius Van Der Put (1980)

Annales de l'institut Fourier

A curve X over a non-archimedean valued field is with respect to its analytic structure a finite union of affinoid spaces. The main result states that the class group of a one dimensional, connected, regular affinoid space Y is trivial if and only if Y is a subspace of P 1 . As a consequence, X has locally a trivial class group if and only if the stable reduction of X has only rational components.

The complex geometry of an integrable system

Ahmed Lesfari (2003)

Archivum Mathematicum

In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization 2 , 8 and that the flow of the system can be linearized on it.

The cuspidal torsion packet on hyperelliptic Fermat quotients

David Grant, Delphy Shaulis (2004)

Journal de Théorie des Nombres de Bordeaux

Let 7 be a prime, C be the non-singular projective curve defined over by the affine model y ( 1 - y ) = x , the point of C at infinity on this model, J the Jacobian of C , and φ : C J the albanese embedding with as base point. Let ¯ be an algebraic closure of . Taking care of a case not covered in [12], we show that φ ( C ) J tors ( ¯ ) consists only of the image under φ of the Weierstrass points of C and the points ( x , y ) = ( 0 , 0 ) and ( 0 , 1 ) , where J tors denotes the torsion points of J .

The degree of the secant variety and the join of monomial curves.

Kristian Ranestad (2006)

Collectanea Mathematica

A monomial curve is a curve parametrized by monomials. The degree of the secant variety of a monomial curve is given in terms of the sequence of exponents of the monomials defining the curve. Likewise, the degree of the join of two monomial curves is given in terms of the two sequences of exponents.

Currently displaying 1841 – 1860 of 2340