Thetareihen und modulare Spitzenformen zu den Hilbertschen Modulgruppen reell-quadratischer Körper. II.
We study the Torelli morphism from the moduli space of stable curves to the moduli space of principally polarized stable semi-abelic pairs. We give two characterizations of its fibers, describe its injectivity locus, and give a sharp upper bound on the cardinality of finite fibers. We also bound the dimension of infinite fibers.
In recent papers we proved a special case of a variant of Pink’s Conjecture for a variety inside a semiabelian scheme: namely for any curve inside anything isogenous to a product of two elliptic schemes. Here we go beyond the elliptic situation by settling the crucial case of any simple abelian surface scheme defined over the field of algebraic numbers, thus confirming an earlier conjecture of Shou-Wu Zhang. This is of particular relevance in the topic, also in view of very recent counterexamples...