Invarianten unipotenter Gruppen.
Klaus Pommerening (1981)
Mathematische Zeitschrift
Michel Brion (1982)
Bulletin de la Société Mathématique de France
Michel Brion (1983)
Annales de l'institut Fourier
Soit un groupe algébrique semi-simple complexe, un sous-groupe unipotent maximal de , un tore maximal de normalisant . Si est un -module rationnel de dimension finie, alors opère sur l’algèbre des fonctions polynomiales sur ; la structure de -module de est décrite par la -algèbre des -invariants de . Cette algèbre est de type fini et multigraduée (par le degré de et le poids par rapport à ). On donne une formule intégrale pour la série de Poincaré de cette algèbre graduée....
Gerry W. Schwarz, David L. Wehlau (1998)
Annales de l'institut Fourier
We consider problems in invariant theory related to the classification of four vector subspaces of an -dimensional complex vector space. We use castling techniques to quickly recover results of Howe and Huang on invariants. We further obtain information about principal isotropy groups, equidimensionality and the modules of covariants.
Stephen Donkin (1992)
Inventiones mathematicae
Stephen Donkin (1988)
Mathematische Zeitschrift
Kriegl, A., Losik, M., Michor, P.W., Rainer, A. (2008)
Acta Mathematica Universitatis Comenianae. New Series
Fedor Bogomolov, Christian Böhning, Hans-Christian Graf von Bothmer (2012)
Open Mathematics
Let G be one of the groups SLn(ℂ), Sp2n (ℂ), SOm(ℂ), Om(ℂ), or G 2. For a generically free G-representation V, we say that N is a level of stable rationality for V/G if V/G × ℙN is rational. In this paper we improve known bounds for the levels of stable rationality for the quotients V/G. In particular, their growth as functions of the rank of the group is linear for G being one of the classical groups.
Günther Trautmann (1978)
Mathematische Annalen
Carlos T. Simpson (1994)
Publications Mathématiques de l'IHÉS
Vladimir Fock, Alexander Goncharov (2006)
Publications Mathématiques de l'IHÉS
Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely...
Keiji Matsumoto, Takeshi Sasaki, Nobuki Takayama, Masaaki Yoshida (1993)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
David J. Saltmann (1984)
Inventiones mathematicae
Gerald W. Schwarz (1987)
Annales de l'institut Fourier
Let be a reductive complex algebraic group, and let denote the algebra of invariant polynomial functions on the direct sum of copies of the representations space of . There is a smallest integer such that generators and relations of can be obtained from those of by polarization and restitution for all . We bound and the degrees of generators and relations of , extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.
Andrzej Białynicki-Birula, Joanna Święcicka (1988)
Colloquium Mathematicae
Dmitri Panyushev (1997)
Annales de l'institut Fourier
In this paper we relate the deformation method in invariant theory to spherical subgroups. Let be a reductive group, an affine -variety and a spherical subgroup. We show that whenever is affine and its semigroup of weights is saturated, the algebra of -invariant regular functions on has a -invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of . The deformation method in its usual form, as developed...
Kushpel', N.N. (2005)
Journal of Mathematical Sciences (New York)
Vinberg, E.B. (1996)
Journal of Lie Theory
Gabriel Katz (1988)
Commentarii mathematici Helvetici
Shmel'kin, Dmitri A. (2001)
Journal of Lie Theory