Displaying 261 – 280 of 396

Showing per page

Pseudo-abelian varieties

Burt Totaro (2013)

Annales scientifiques de l'École Normale Supérieure

Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field k to be a smooth connected k -group in which every smooth connected affine normal k -subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension...

Purity of level m stratifications

Marc-Hubert Nicole, Adrian Vasiu, Torsten Wedhorn (2010)

Annales scientifiques de l'École Normale Supérieure

Let k be a field of characteristic p > 0 . Let D m be a BT m over k (i.e., an m -truncated Barsotti–Tate group over k ). Let S be a k -scheme and let X be a BT m over S . Let S D m ( X ) be the subscheme of S which describes the locus where X is locally for the fppf topology isomorphic to D m . If p 5 , we show that S D m ( X ) is pure in S , i.e. the immersion S D m ( X ) S is affine. For p { 2 , 3 } , we prove purity if D m satisfies a certain technical property depending only on its p -torsion D m [ p ] . For p 5 , we apply the developed techniques to show that all level m ...

Quiver varieties and Weyl group actions

George Lusztig (2000)

Annales de l'institut Fourier

The cohomology of Nakajima’s varieties is known to carry a natural Weyl group action. Here this fact is established using the method of intersection cohomology, in analogy with the definition of Springer’s representations.

Quotients of toric varieties by actions of subtori

Joanna Święcicka (1999)

Colloquium Mathematicae

Let X be an algebraic toric variety with respect to an action of an algebraic torus S. Let Σ be the corresponding fan. The aim of this paper is to investigate open subsets of X with a good quotient by the (induced) action of a subtorus T ⊂ S. It turns out that it is enough to consider open S-invariant subsets of X with a good quotient by T. These subsets can be described by subfans of Σ. We give a description of such subfans and also a description of fans corresponding to quotient varieties. Moreover,...

Rational periodic points for quadratic maps

Jung Kyu Canci (2010)

Annales de l’institut Fourier

Let K be a number field. Let S be a finite set of places of K containing all the archimedean ones. Let R S be the ring of S -integers of K . In the present paper we consider endomorphisms of 1 of degree 2 , defined over K , with good reduction outside S . We prove that there exist only finitely many such endomorphisms, up to conjugation by PGL 2 ( R S ) , admitting a periodic point in 1 ( K ) of order > 3 . Also, all but finitely many classes with a periodic point in 1 ( K ) of order 3 are parametrized by an irreducible curve.

Rational points and Coxeter group actions on the cohomology of toric varieties

Gustav I. Lehrer (2008)

Annales de l’institut Fourier

We derive a simple formula for the action of a finite crystallographic Coxeter group on the cohomology of its associated complex toric variety, using the method of counting rational points over finite fields, and the Hodge structure of the cohomology. Various applications are given, including the determination of the graded multiplicity of the reflection representation.

Rational smoothness of varieties of representations for quivers of Dynkin type

Philippe Caldero, Ralf Schiffler (2004)

Annales de l’institut Fourier

We study the Zariski closures of orbits of representations of quivers of type A , D ou E . With the help of Lusztig’s canonical base, we characterize the rationally smooth orbit closures and prove in particular that orbit closures are smooth if and only if they are rationally smooth.

Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero

Andrey Trepalin (2014)

Open Mathematics

Let 𝕜 be a field of characteristic zero and G be a finite group of automorphisms of projective plane over 𝕜 . Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field 𝕜 is algebraically closed. In this paper we prove that 𝕜 2 𝕜 2 G G is rational for an arbitrary field 𝕜 of characteristic zero.

Currently displaying 261 – 280 of 396