Displaying 521 – 540 of 884

Showing per page

On the Moment Map of a Multiplicity Free Action

Andrzej Daszkiewicz, Tomasz Przebinda (1996)

Colloquium Mathematicae

The purpose of this note is to show that the Orbit Conjecture of C. Benson, J. Jenkins, R. L. Lipsman and G. Ratcliff [BJLR1] is true. Another proof of that fact has been given by those authors in [BJLR2]. Their proof is based on their earlier results, announced together with the conjecture in [BJLR1]. We follow another path: using a geometric quantization result of Guillemin-Sternberg [G-S] we reduce the conjecture to a similar statement for a projective space, which is a special case of a characterization...

On the motive of a quotient variety.

Sebastián del Baño Rollin, Vicente Navarro Aznar (1998)

Collectanea Mathematica

We show that the motive of the quotient of a scheme by a finite group coincides with the invariant submotive.

On the S-fundamental group scheme

Adrian Langer (2011)

Annales de l’institut Fourier

We introduce a new fundamental group scheme for varieties defined over an algebraically closed (or just perfect) field of positive characteristic and we use it to study generalization of C. Simpson’s results to positive characteristic. We also study the properties of this group and we prove Lefschetz type theorems.

Optimal destabilizing vectors in some Gauge theoretical moduli problems

Laurent Bruasse (2006)

Annales de l’institut Fourier

We prove that the well-known Harder-Narsimhan filtration theory for bundles over a complex curve and the theory of optimal destabilizing 1 -parameter subgroups are the same thing when considered in the gauge theoretical framework.Indeed, the classical concepts of the GIT theory are still effective in this context and the Harder-Narasimhan filtration can be viewed as a limit object for the action of the gauge group, in the direction of an optimal destabilizing vector. This vector appears as an extremal...

Currently displaying 521 – 540 of 884