Maximally generated Cohen-Macaulay modules.
A geodesic of a homogeneous Riemannian manifold is called homogeneous if it is an orbit of an one-parameter subgroup of . In the case when is a naturally reductive space, that is the -invariant metric is defined by some non degenerate biinvariant symmetric bilinear form , all geodesics of are homogeneous. We consider the case when is a flag manifold, i.eȧn adjoint orbit of a compact semisimple Lie group , and we give a simple necessary condition that admits a non-naturally reductive...
A combinatorial description of the minimal free resolution of a lattice ideal allows us to the connection of Integer Linear Programming and Al1gebra. The non null reduced homology spaces of some simplicial complexes are the key. The extremal rays of the associated cone reduce the number of variables.
In this paper we introduce the notion of modified Nash triviality for a family of zero sets of real polynomial map-germs as a desirable one. We first give a Nash isotopy lemma which is a useful tool to show triviality.Then, using it, we prove two types of modified Nash triviality theorem and a finite classification theorem for this triviality. These theorems strengthen similar topological results.
We extend the methods of geometric invariant theory to actions of non–reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non–reductive. Given a linearization of the natural action of the group on Hom(E,F), a homomorphism is called stable if its orbit with respect to the unipotent radical is contained in the stable locus with respect to the natural reductive subgroup of the automorphism group. We encounter effective numerical conditions for...
We extend the construction of moment-angle complexes to simplicial posets by associating a certain T m-space Z S to an arbitrary simplicial poset S on m vertices. Face rings ℤ[S] of simplicial posets generalise those of simplicial complexes, and give rise to new classes of Gorenstein and Cohen-Macaulay rings. Our primary motivation is to study the face rings ℤ[S] by topological methods. The space Z S has many important topological properties of the original moment-angle complex Z K associated to...
Let be an -dimensional irreducible smooth complex projective variety embedded in a projective space. Let be a closed subscheme of , and be a positive integer such that is generated by global sections. Fix an integer , and assume the general divisor is smooth. Denote by the quotient of by the cohomology of and also by the cycle classes of the irreducible components of dimension of . In the present paper we prove that the monodromy representation on for the family of smooth...