Resolution of quasi-homogeneous singularities and plurigenera
We characterize minimal free resolutions of homogeneous bundles on . Besides we study stability and simplicity of homogeneous bundles on by means of their minimal free resolutions; in particular we give a criterion to see when a homogeneous bundle is simple by means of its minimal resolution in the case the first bundle of the resolution is irreducible.
La conjecture de « dualité étrange » de Le Potier donne un isomorphisme entre l’espace des sections du fibré déterminant sur deux espaces de modules différents de faisceaux semi-stables sur le plan projectif . On considère deux classes orthogonales dans l’algèbre de Grothendieck telles que est de rang strictement positif et est de rang zéro, et on note et les espaces de modules de faisceaux semi-stables de classe , respectivement sur . Il existe sur (resp. ) un fibré déterminant...
It is well-known that the -th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard rate of convergence if the sum is over the lattice, . In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.