Displaying 881 – 900 of 1240

Showing per page

Resolutions of homogeneous bundles on 2

Giorgio Ottaviani, Elena Rubei (2005)

Annales de l’institut Fourier

We characterize minimal free resolutions of homogeneous bundles on 2 . Besides we study stability and simplicity of homogeneous bundles on 2 by means of their minimal free resolutions; in particular we give a criterion to see when a homogeneous bundle is simple by means of its minimal resolution in the case the first bundle of the resolution is irreducible.

Résultats sur la conjecture de dualité étrange sur le plan projectif

Gentiana Danila (2002)

Bulletin de la Société Mathématique de France

La conjecture de « dualité étrange » de Le Potier donne un isomorphisme entre l’espace des sections du fibré déterminant sur deux espaces de modules différents de faisceaux semi-stables sur le plan projectif 2 . On considère deux classes orthogonales c , u dans l’algèbre de Grothendieck K ( 2 ) telles que c est de rang strictement positif et u est de rang zéro, et on note M c et M u les espaces de modules de faisceaux semi-stables de classe c , respectivement u sur 2 . Il existe sur M c (resp. M u ) un fibré déterminant...

Riemann sums over polytopes

Victor Guillemin, Shlomo Sternberg (2007)

Annales de l’institut Fourier

It is well-known that the N -th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard O ( 1 / N ) rate of convergence if the sum is over the lattice, Z / N . In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.

Schubert varieties and representations of Dynkin quivers

Grzegorz Bobiński, Grzegorz Zwara (2002)

Colloquium Mathematicae

We show that the types of singularities of Schubert varieties in the flag varieties Flagₙ, n ∈ ℕ, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔸. Similarly, we prove that the types of singularities of Schubert varieties in products of Grassmannians Grass(n,a) × Grass(n,b), a, b, n ∈ ℕ, a, b ≤ n, are equivalent to the types of singularities of orbit closures for the representations of Dynkin quivers of type 𝔻. We also show that...

Currently displaying 881 – 900 of 1240