Displaying 961 – 980 of 1240

Showing per page

Spherical conjugacy classes and the Bruhat decomposition

Giovanna Carnovale (2009)

Annales de l’institut Fourier

Let G be a connected, reductive algebraic group over an algebraically closed field of zero or good and odd characteristic. We characterize spherical conjugacy classes in G as those intersecting only Bruhat cells in G corresponding to involutions in the Weyl group of  G .

Spherical roots of spherical varieties

Friedrich Knop (2014)

Annales de l’institut Fourier

Brion proved that the valuation cone of a complex spherical variety is a fundamental domain for a finite reflection group, called the little Weyl group. The principal goal of this paper is to generalize this theorem to fields of characteristic unequal to 2. We also prove a weaker version which holds in characteristic 2, as well. Our main tool is a generalization of Akhiezer’s classification of spherical varieties of rank 1.

Spherical varieties and Wahl’s conjecture

Nicolas Perrin (2014)

Annales de l’institut Fourier

Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.

Stabilization of monomial maps in higher codimension

Jan-Li Lin, Elizabeth Wulcan (2014)

Annales de l’institut Fourier

A monomial self-map f on a complex toric variety is said to be k -stable if the action induced on the 2 k -cohomology is compatible with iteration. We show that under suitable conditions on the eigenvalues of the matrix of exponents of f , we can find a toric model with at worst quotient singularities where f is k -stable. If f is replaced by an iterate one can find a k -stable model as soon as the dynamical degrees λ k of f satisfy λ k 2 > λ k - 1 λ k + 1 . On the other hand, we give examples of monomial maps f , where this condition...

Stably rational algebraic tori

Valentin E. Voskresenskii (1999)

Journal de théorie des nombres de Bordeaux

The rationality of a stably rational torus with a cyclic splitting field is proved.

Stratification theory from the Newton polyhedron point of view

Ould M. Abderrahmane (2004)

Annales de l’institut Fourier

Recently, T. Fukui and L. Paunescu introduced a weighted version of the ( w ) -regularity condition and Kuo’s ratio test condition. In this approach, we consider the ( w ) - regularity condition and ( c ) -regularity related to a Newton filtration.

Subcanonicity of codimension two subvarieties.

Enrique Arrondo (2005)

Revista Matemática Complutense

We prove that smooth subvarieties of codimension two in Grassmannians of lines of dimension at least six are rationally numerically subcanonical. We prove the same result for smooth quadrics of dimension at least six under some extra condition. The method is quite easy, and only uses Serre s construction, Porteous formula, and Hodge index theorem.

Currently displaying 961 – 980 of 1240