Displaying 201 – 220 of 561

Showing per page

Invariance of tautological equations I: conjectures and applications

Y.-P. Lee (2008)

Journal of the European Mathematical Society

The main goal of this paper is to introduce a set of conjectures on the relations in the tautological rings. In particular, this framework gives an efficient algorithm to calculate all tautological equations using only finite-dimensional linear algebra. Other applications include the proofs of Witten’s conjecture on the relations between higher spin curves and Gelfand–Dickey hierarchy and Virasoro conjecture for target manifolds with conformal semisimple quantum cohomology, both for genus up to...

Invariants of real symplectic four-manifolds out of reducible and cuspidal curves

Jean-Yves Welschinger (2006)

Bulletin de la Société Mathématique de France

We construct invariants under deformation of real symplectic four-manifolds. These invariants are obtained by counting three different kinds of real rational J -holomorphic curves which realize a given homology class and pass through a given real configuration of (the appropriate number of) points. These curves are cuspidal curves, reducible curves and curves with a prescribed tangent line at some real point of the configuration. They are counted with respect to some sign defined by the parity of...

Invertible cohomological field theories and Weil-Petersson volumes

Yuri I. Manin, Peter Zograf (2000)

Annales de l'institut Fourier

We show that the generating function for the higher Weil–Petersson volumes of the moduli spaces of stable curves with marked points can be obtained from Witten’s free energy by a change of variables given by Schur polynomials. Since this generating function has a natural extension to the moduli space of invertible Cohomological Field Theories, this suggests the existence of a “very large phase space”, correlation functions on which include Hodge integrals studied by C. Faber and R. Pandharipande....

K ( π , 1 ) conjecture for Artin groups

Luis Paris (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The purpose of this paper is to put together a large amount of results on the K ( π , 1 ) conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as...

La conjecture de Green générique

Arnaud Beauville (2003/2004)

Séminaire Bourbaki

Une courbe C projective et lisse de genre g , non hyperelliptique, admet un plongement canonique dans un espace projectif g - 1 . Un résultat classique affirme que l’idéal gradué I C des équations de C dans g - 1 est engendré par ses éléments de degré 2 , sauf si C admet certains systèmes linéaires très particuliers. Mark Green en a proposé il y a vingt ans une vaste généralisation, qui décrit la résolution minimale de I C en fonction de l’existence de systèmes linéaires spéciaux sur C . Claire Voisin vient de...

Labeled floor diagrams for plane curves

Sergey Fomin, Grigory Mikhalkin (2010)

Journal of the European Mathematical Society

Floor diagrams are a class of weighted oriented graphs introduced by E. Brugallé and the second author. Tropical geometry arguments lead to combinatorial descriptions of (ordinary and relative) Gromov–Witten invariants of projective spaces in terms of floor diagrams and their generalizations. In a number of cases, these descriptions can be used to obtain explicit (direct or recursive) formulas for the corresponding enumerative invariants. In particular, we use this approach to enumerate rational...

Landau-Ginzburg models in real mirror symmetry

Johannes Walcher (2011)

Annales de l’institut Fourier

In recent years, mirror symmetry for open strings has exhibited some new connections between symplectic and enumerative geometry (A-model) and complex algebraic geometry (B-model) that in a sense lie between classical and homological mirror symmetry. I review the rôle played in this story by matrix factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.

Le formule del grado

Simone Borghesi (2005)

Bollettino dell'Unione Matematica Italiana

Questo manoscritto è un'introduzione al concetto di formule del grado e a qualche loro applicazione. In esso si dà una formalizzazione di quello che si intenderà con formula del grado, vengono enunciati due esempi: uno cosiddetto di primo livello ed uno più generale. Successivamente si descrivono le componenti di queste formule: i numeri e gli ideali di ostruzione. Dopo un breve accenno alla dimostrazione, il testo si conclude con una sezione in cui si analizzano esplicitamente varietà algebriche...

Le théorème de Bertini en famille

Olivier Benoist (2011)

Bulletin de la Société Mathématique de France

On majore la dimension de l’ensemble des hypersurfaces de N dont l’intersection avec une variété projective intègre fixée n’est pas intègre. Les majorations obtenues sont optimales. Comme application, on construit, quand c’est possible, des hypersurfaces dont les intersections avec toutes les variétés d’une famille de variétés projectives intègres sont intègres. Le degré des hypersurfaces construites est explicite.

Currently displaying 201 – 220 of 561