Hodge decomposition for higher order Hochschild homology
We give a survey of our recent results on homological properties of Köthe algebras, with an emphasis on biprojectivity, biflatness, and homological dimension. Some new results on the approximate contractibility of Köthe algebras are also presented.
Let be a CM-finite Artin algebra with a Gorenstein-Auslander generator , be a Gorenstein projective -module and . We give an upper bound for the finitistic dimension of in terms of homological data of . Furthermore, if is -Gorenstein for , then we show the global dimension of is less than or equal to plus the -projective dimension of As an application, the global dimension of is less than or equal to .
On étudie ici les notions d’algèbre de Gerstenhaber à homotopie près et d’homologie des algèbres de Gerstenhaber du point de vue de la théorie des opérades. Précisément, on donne une description explicite des -algèbres à homotopie près (c’est-à-dire d’algèbres sur le modèle minimal de l’opérade des algèbres de Gerstenhaber). On décrit également le complexe calculant l’homologie des -algèbres. On donne une suite spectrale qui converge vers cette homologie et quelques exemples de calculs. Enfin...
Let S be a Rees semigroup, and let ℓ¹(S) be its convolution semigroup algebra. Using Morita equivalence we show that bounded Hochschild homology and cohomology of ℓ¹(S) are isomorphic to those of the underlying discrete group algebra.
Using the algebraic theory of homotopies between maps of dga's we obtain a homotopy theory for algebraic structures defined by collections of multiplications and comultiplications. This is done by expressing these structures and resolved versions of them in terms of dga maps. This same homotopy theory of dga maps applies to extract invariants beyond homological periods from systems of moduli spaces that determine systems of chains that satisfy master equations like dX + X*X = 0. Minimal models of...