On quasi-ideals and bi-ideals in ternary semirings.
We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups for which is regular is given.
We continue the study of ditalgebras, an acronym for "differential tensor algebras", and of their categories of modules. We examine extension/restriction interactions between module categories over a ditalgebra and a proper subditalgebra. As an application, we prove a result on representations of finite-dimensional tame algebras Λ over an algebraically closed field, which gives information on the extension/restriction interaction between module categories of some special algebras Λ₀, called convex...
The following results are proved for a ring : (1) If is a fully right idempotent ring having a classical left quotient ring which is right quasi-duo, then is a strongly regular ring; (2) has a classical left quotient ring which is a finite direct sum of division rings iff is a left -ring having a reduced maximal right ideal and satisfying the maximum condition on left annihilators; (3) Let have the following properties: (a) each maximal left ideal of is either a two-sided ideal...
Right ue-rings (rings with the property of the title, i.e., with the maximality of the right socle) are investigated. It is shown that a semiprime ring R is a right ue-ring if and only if R is a regular V-ring with the socle being a maximal right ideal, and if and only if the intrinsic topology of R is non-discrete Hausdorff and dense proper right ideals are semisimple. It is proved that if R is a right self-injective right ue-ring (local right ue-ring), then R is never semiprime and is Artin semisimple...
Let A and R be two artin algebras such that R is a split extension of A by a nilpotent ideal. We prove that if R is quasi-tilted, or tame and tilted, then so is A. Moreover, generalizations of these properties, such as laura and shod, are also inherited. We also study the relationship between the tilting R-modules and the tilting A-modules.