Almost Split Sequences over p-adic Rings.
We present general properties for almost-flat modules and we prove that a self-small right module is almost flat as a left module over its endomorphism ring if and only if the class of -static modules is closed under the kernels.
Let m ≥ 2 be an integer. By using m submodules of a given module, we construct a certain exact sequence, which is a well known short exact sequence when m = 2. As an application, we compute a minimal projective resolution of the Jacobson radical of a tiled order.
A sequence of Temperley-Lieb algebra elements corresponding to torus braids with growing twisting numbers converges to the Jones-Wenzl projector. We show that a sequence of categorification complexes of these braids also has a limit which may serve as a categorification of the Jones-Wenzl projector.
We show that there are exactly three types of Hilbert series of Artin-Schelter regular algebras of dimension five with two generators. One of these cases (the most extreme) may not be realized by an enveloping algebra of a graded Lie algebra. This is a new phenomenon compared to lower dimensions, where all resolution types may be realized by such enveloping algebras.
In the present paper, we will show that the set of minimal elements of a full affine semigroup contains a free basis of the group generated by in . This will be applied to the study of the group for a semilocal ring .
Let be any compact simply-connected oriented -dimensional smooth manifold and let be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of , , extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on , introduced by Chas and Sullivan. We also show that the negative cyclic cohomology ...