Displaying 661 – 680 of 1097

Showing per page

Restricted Boolean group rings

Dinesh Udar, R.K. Sharma, J.B. Srivastava (2017)

Archivum Mathematicum

In this paper we study restricted Boolean rings and group rings. A ring R is 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑𝐵𝑜𝑜𝑙𝑒𝑎𝑛 if every proper homomorphic image of R is boolean. Our main aim is to characterize restricted Boolean group rings. A complete characterization of non-prime restricted Boolean group rings has been obtained. Also in case of prime group rings necessary conditions have been obtained for a group ring to be restricted Boolean. A counterexample is given to show that these conditions are not sufficient.

Rings consisting entirely of certain elements

Huanyin Chen, Marjan Sheibani, Nahid Ashrafi (2018)

Czechoslovak Mathematical Journal

We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; 3 3 ; 3 B where B is a Boolean ring; local ring with nil Jacobson radical; M 2 ( 2 ) or M 2 ( 3 ) ; or the ring of a Morita context with zero pairings where the underlying rings are 2 or 3 .

Rings whose modules are finitely generated over their endomorphism rings

Nguyen Viet Dung, José Luis García (2009)

Colloquium Mathematicae

A module M is called finendo (cofinendo) if M is finitely generated (respectively, finitely cogenerated) over its endomorphism ring. It is proved that if R is any hereditary ring, then the following conditions are equivalent: (a) Every right R-module is finendo; (b) Every left R-module is cofinendo; (c) R is left pure semisimple and every finitely generated indecomposable left R-module is cofinendo; (d) R is left pure semisimple and every finitely generated indecomposable left R-module is finendo;...

s -weakly regular group rings

W. B. Vasantha Kandasamy (1993)

Archivum Mathematicum

In this note we obtain a necessary and sufficient condition for a ring to be s -weakly regular (i) When R is a ring with identity and without divisors of zero (ii) When R is a ring without divisors of zero. Further it is proved in a s -weakly regular ring with identity and without units every element is a zero divisor.

Semicommutativity of the rings relative to prime radical

Handan Kose, Burcu Ungor (2015)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called P -semicommutative. We prove that a ring R is P -semicommutative if and only if R [ x ] is P -semicommutative if and only if R [ x , x - 1 ] is P -semicommutative. Also, if R [ [ x ] ] is P -semicommutative, then R is P -semicommutative. The converse holds provided that P ( R ) is nilpotent and R is power serieswise Armendariz. For each positive integer n , R is P -semicommutative if and...

Currently displaying 661 – 680 of 1097