The closure diagrams for nilpotent orbits of real forms of .
We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.
We prove that the separating space of a Lie homomorphism from a Banach algebra onto a Banach algebra is contained in the centre modulo the radical.
In this paper we investigate the contribution of Dehn to the development of non-Archimedean geometries. We will see that it is possible to construct some models of non-Archimedean geometries in order to prove the independence of the continuity axiom and we will study the interrelations between Archimedes’ axiom and Legendre’s theorems. Some of these interrelations were also studied by Bonola, who was one of the very few Italian scholars to appreciate Dehn’s work. We will see that, if Archimedes’...
We obtain conditions on a JB*-algebra X so that the canonical embedding of X into its associated quasi-invertible manifold has dense range. We prove that if a JB* has this density property then the quasi-invertible manifold is homogeneous for biholomorphic mappings. Explicit formulae for the biholomorphic mappings are also given.
The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equivalence for large classes of Poisson polynomial rings, including semiclassical limits of quantum matrices,...
We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.
The aim of this work is to obtain the structure of c-covers of c-capable Lie algebras. We also obtain some results on the existence of c-covers and, under some assumptions, we prove the absence of c-covers of Lie algebras.