Displaying 581 – 600 of 2671

Showing per page

Eulerian idempotent and Kashiwara-Vergne conjecture

Emily Burgunder (2008)

Annales de l’institut Fourier

By using the interplay between the Eulerian idempotent and the Dynkin idempotent, we construct explicitly a particular symmetric solution ( F , G ) of the first equation of the Kashiwara-Vergne conjecture x + y - log ( e y e x ) = ( 1 - e - ad x ) F ( x , y ) + ( e ad y - 1 ) G ( x , y ) . Then, we explicit all the solutions of the equation in the completion of the free Lie algebra generated by two indeterminates x and y thanks to the kernel of the Dynkin idempotent.

Existence and construction of two-dimensional invariant subspaces for pairs of rotations

Ernst Dieterich (2009)

Colloquium Mathematicae

By a rotation in a Euclidean space V of even dimension we mean an orthogonal linear operator on V which is an orthogonal direct sum of rotations in 2-dimensional linear subspaces of V by a common angle α ∈ [0,π]. We present a criterion for the existence of a 2-dimensional subspace of V which is invariant under a given pair of rotations, in terms of the vanishing of a determinant associated with that pair. This criterion is constructive, whenever it is satisfied. It is also used to prove that every...

Exotic Deformations of Calabi-Yau Manifolds

Paolo de Bartolomeis, Adriano Tomassini (2013)

Annales de l’institut Fourier

We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) 2 n -dimensional symplectic manifolds ( M , κ ) endowed with a κ -tamed almost complex structure J and with a nowhere vanishing and normalized section ϵ of the bundle Λ J n , 0 ( M ) satisfying the condition ¯ J ϵ = 0 .We study the moduli space 𝔐 of QIS deformations of a given Calabi-Yau manifold, computing its tangent space and showing that 𝔐 is non obstructed. Finally, we present several examples of QIS manifolds.

Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere

Joël Merker, Masoud Sabzevari (2012)

Open Mathematics

We study effectively the Cartan geometry of Levi-nondegenerate C 6-smooth hypersurfaces M 3 in ℂ2. Notably, we present the so-called curvature function of a related Tanaka-type normal connection explicitly in terms of a graphing function for M, which is the initial, single available datum. Vanishing of this curvature function then characterizes explicitly the local biholomorphic equivalence of such M 3 ⊂ ℂ2 to the Heisenberg sphere ℍ3, such M’s being necessarily real analytic.

Explicit representations of classical Lie superalgebras in a Gelfand-Zetlin basis

N. I. Stoilova, J. Van der Jeugt (2011)

Banach Center Publications

An explicit construction of all finite-dimensional irreducible representations of classical Lie algebras is a solved problem and a Gelfand-Zetlin type basis is known. However the latter lacks the orthogonality property or does not consist of weight vectors for 𝔰𝔬(n) and 𝔰𝔭(2n). In case of Lie superalgebras all finite-dimensional irreducible representations are constructed explicitly only for 𝔤𝔩(1|n), 𝔤𝔩(2|2), 𝔬𝔰𝔭(3|2) and for the so called essentially typical representations of 𝔤𝔩(m|n)....

Exponentiations over the quantum algebra U q ( s l 2 ( ) )

Sonia L’Innocente, Françoise Point, Carlo Toffalori (2013)

Confluentes Mathematici

We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra U q ( s l 2 ( ) ) . We discuss two cases, according to whether the parameter q is a root of unity. We show that the universal enveloping algebra of s l 2 ( ) embeds in a non-principal ultraproduct of U q ( s l 2 ( ) ) , where q varies over the primitive roots of unity.

Currently displaying 581 – 600 of 2671