Displaying 701 – 720 of 2671

Showing per page

Geometry of third order ODE systems

Alexandr Medvedev (2010)

Archivum Mathematicum

We compute cohomology spaces of Lie algebras that describe differential invariants of third order ordinary differential equations. We prove that the algebra of all differential invariants is generated by 2 tensorial invariants of order 2, one invariant of order 3 and one invariant of order 4. The main computational tool is a Serre-Hochschild spectral sequence and the representation theory of semisimple Lie algebras. We compute differential invariants up to degree 2 as application.

Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects

Claude Roger (2009)

Archivum Mathematicum

We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.

Globality in semisimple Lie groups

Karl-Hermann Neeb (1990)

Annales de l'institut Fourier

In the first section of this paper we give a characterization of those closed convex cones (wedges) W in the Lie algebra s l ( 2 , R ) n which are invariant under the maximal compact subgroup of the adjoint group and which are controllable in the associated simply connected Lie group S l ( 2 , R ) n , i.e., for which the subsemigroup S = ( exp W ) generated by the exponential image of W agrees with the whole group G (Theorem 13). In Section 2 we develop some algebraic tools concerning real root decompositions with respect to compactly...

Gradedness of the set of rook placements in A n - 1

Mikhail V. Ignatev (2021)

Communications in Mathematics

A rook placement is a subset of a root system consisting of positive roots with pairwise non-positive inner products. To each rook placement in a root system one can assign the coadjoint orbit of the Borel subgroup of a reductive algebraic group with this root system. Degenerations of such orbits induce a natural partial order on the set of rook placements. We study combinatorial structure of the set of rook placements in A n - 1 with respect to a slightly different order and prove that this poset is...

Graphs associated with nilpotent Lie algebras of maximal rank.

Eduardo Díaz, Rafael Fernández-Mateos, Desamparados Fernández-Ternero, Juan Núñez (2003)

Revista Matemática Iberoamericana

In this paper, we use the graphs as a tool to study nilpotent Lie algebras. It implies to set up a link betwcen graph theory and Lie theory. To do this, it is already known that every nilpotent Lie algebra of maximal rank is associated with a generalized Cartan matrix A and it ils isomorphic to a quotient of the positive part n+ of the KacMoody algebra g(A). Then, if A is affine, we can associate n+ with a directed graph (from now on, we use the term digraph) and we can also associate a subgraph...

Groupe de Galois différentiel local et représentation adjointe

Elie Compoint, Anne Duval (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article on s’intéresse à la représentation adjointe du tore exponentiel sur l’algèbre de Lie du groupe de Galois différentiel local. Nous proposons un algorithme pour réduire les sous-espaces poids de dimension supérieure à 1 à des sous-espaces de racines. Ce faisant, on construit un tore (en général) maximal qui contient le tore exponentiel. Au cours de ce travail on est amené à étudier la régularité du tore exponentiel dans le groupe de Galois local.

Currently displaying 701 – 720 of 2671