Displaying 721 – 740 of 2671

Showing per page

Growth of some varieties of Leibniz-Poisson algebras

Ratseev, S. M. (2011)

Serdica Mathematical Journal

2010 Mathematics Subject Classification: 17A32, 17B63.Let V be a variety of Leibniz-Poisson algebras over an arbitrary field whose ideal of identities contains the identities {{x1,y1},{x2,y2},ј,{xm,ym}} = 0, {x1,y1}·{x2,y2}· ј ·{xm,ym} = 0 for some m. It is shown that the exponent of V exists and is an integer.

Hall algebras of two equivalent extriangulated categories

Shiquan Ruan, Li Wang, Haicheng Zhang (2024)

Czechoslovak Mathematical Journal

For any positive integer n , let A n be a linearly oriented quiver of type A with n vertices. It is well-known that the quotient of an exact category by projective-injectives is an extriangulated category. We show that there exists an extriangulated equivalence between the extriangulated categories n + 1 and n , where n + 1 and n are the two extriangulated categories corresponding to the representation category of A n + 1 and the morphism category of projective representations of A n , respectively. As a by-product,...

Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products

Pavel Etingof, Wee Liang Gan, Victor Ginzburg, Alexei Oblomkov (2007)

Publications Mathématiques de l'IHÉS

The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflection functors and shift functors for generalized preprojective algebras and symplectic reflection algebras...

Heisenberg algebra and a graphical calculus

Mikhail Khovanov (2014)

Fundamenta Mathematicae

A new calculus of planar diagrams involving diagrammatics for biadjoint functors and degenerate affine Hecke algebras is introduced. The calculus leads to an additive monoidal category whose Grothendieck ring contains an integral form of the Heisenberg algebra in infinitely many variables. We construct bases of the vector spaces of morphisms between products of generating objects in this category.

Higher symmetries of the Laplacian via quantization

Jean-Philippe Michel (2014)

Annales de l’institut Fourier

We develop a new approach, based on quantization methods, to study higher symmetries of invariant differential operators. We focus here on conformally invariant powers of the Laplacian over a conformally flat manifold and recover results of Eastwood, Leistner, Gover and Šilhan. In particular, conformally equivariant quantization establishes a correspondence between the algebra of Hamiltonian symmetries of the null geodesic flow and the algebra of higher symmetries of the conformal Laplacian. Combined...

Currently displaying 721 – 740 of 2671