Displaying 861 – 880 of 2671

Showing per page

Jordan- and Lie geometries

Wolfgang Bertram (2013)

Archivum Mathematicum

In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic...

Jordan pairs of quadratic forms with values in invertible modules.

Hisatoshi Ikai (2007)

Collectanea Mathematica

Jordan pairs of quadratic forms are generalized so that they have forms with values in invertible modules. The role of such pairs turns out to be natural in describing 'big cells', a kind of open charts around unit sections, of Clifford and orthogonal groups as group schemes. Group germ structures on big cells are particularly interested in and related also to Cayley-Lipschitz transforms.

Jordan polynomials can be analytically recognized

M. Cabrera Garcia, A. Moreno Galindo, A. Rodríguez Palacios, E. Zel'manov (1996)

Studia Mathematica

We prove that there exists a real or complex central simple associative algebra M with minimal one-sided ideals such that, for every non-Jordan associative polynomial p, a Jordan-algebra norm can be given on M in such a way that the action of p on M becomes discontinuous.

Jordan superderivations and Jordan triple superderivations of superalgebras

He Yuan, Liangyun Chen (2016)

Colloquium Mathematicae

We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.

Kac-Moody groups, hovels and Littelmann paths

Stéphane Gaussent, Guy Rousseau (2008)

Annales de l’institut Fourier

We give the definition of a kind of building for a symmetrizable Kac-Moody group over a field K endowed with a discrete valuation and with a residue field containing . Due to the lack of some important property of buildings, we call it a hovel. Nevertheless, some good ones remain, for example, the existence of retractions with center a sector-germ. This enables us to generalize many results proved in the semisimple case by S. Gaussent and P. Littelmann. In particular, if K = ( ( t ) ) , the geodesic segments...

Currently displaying 861 – 880 of 2671