Displaying 981 – 1000 of 2671

Showing per page

Local superderivations on Lie superalgebra 𝔮 ( n )

Haixian Chen, Ying Wang (2018)

Czechoslovak Mathematical Journal

Let 𝔮 ( n ) be a simple strange Lie superalgebra over the complex field . In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but 𝔭 ( n ) is an exception. In this...

Localization in semicommutative (m,n)-rings

Lăcrimioara Iancu, Maria S. Pop (2000)

Discussiones Mathematicae - General Algebra and Applications

We give a construction for (m,n)-rings of quotients of a semicommutative (m,n)-ring, which generalizes the ones given by Crombez and Timm and by Paunić for the commutative case. We also study various constructions involving reduced rings and rings of quotients and give some functorial interpretations.

Malcev-Moduln.

Renate Carlsson (1976)

Journal für die reine und angewandte Mathematik

Mappings on some reflexive algebras characterized by action on zero products or Jordan zero products

Yunhe Chen, Jiankui Li (2011)

Studia Mathematica

Let 𝓛 be a subspace lattice on a Banach space X and let δ: Alg𝓛 → B(X) be a linear mapping. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L}= X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0), we show that the following three conditions are equivalent: (1) δ(AB) = δ(A)B + Aδ(B) whenever AB = 0; (2) δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = 0; (3) δ is a generalized derivation and δ(I) ∈ (Alg𝓛)'. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L} = X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0) and δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A)...

Currently displaying 981 – 1000 of 2671