Multiple radical theories
For a Banach space X, we show how the existence of a norm-one element u in X and a norm-one continuous bilinear mapping f: X x X --> X satisfying f(x,u) = f(u,x) = x for all x in X, together with some more intrinsic conditions, can be utilized to characterize X as a member of some relevant subclass of the class of Banach spaces.
We define a category containing the discrete quantum groups (and hence the discrete groups and the duals of compact groups) and the compact quantum groups (and hence the compact groups and the duals of discrete groups). The dual of an object can be defined within the same category and we have a biduality theorem. This theory extends the duality between compact quantum groups and discrete quantum groups (and hence the one between compact abelian groups and discrete abelian groups). The objects in...
We give a Hodge-theoretic parametrization of certain real Lie group orbits in the compact dual of a Mumford-Tate domain, and characterize the orbits which contain a naive limit Hodge filtration. A series of examples are worked out for the groups , , and .
[For the entire collection see Zbl 0742.00067.]This paper is devoted to a method permitting to determine explicitly all multilinear natural operators between vector-valued differential forms and between sections of several other natural vector bundles.
A full Nesterov-Todd step infeasible interior-point algorithm is proposed for solving linear programming problems over symmetric cones by using the Euclidean Jordan algebra. Using a new approach, we also provide a search direction and show that the iteration bound coincides with the best known bound for infeasible interior-point methods.