Normalisation d'une représentation non linéaire d'une algèbre de Lie
It is explicitly shown how the Lie algebras can be associated with the analytic Moufang loops. The resulting Lie algebra commutation relations are well known from the theory of alternative algebras.
Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with and are of type and give a class of Novikov superalgebras of type with .
Dans cet article, en utilisant les algèbres de Jordan euclidiennes, nous étudions l’espace de Hardy d’un espace symétrique de type Cayley . Nous montrons que le noyau de Cauchy-Szegö de s’exprime comme somme d’une série faisant intervenir la fonction de Harish-Chandra de l’espace symétrique riemannien , la fonction de l’espace symétrique -dual de et les fonctions sphériques de l’espace symétrique ordonné . Nous établissons, dans le cas où la dimension de l’algèbre de Jordan associée...
In this note, the octonion multiplication table is recovered from a regular tesselation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map.
Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group , and of its subgroups. We are therefore led to a description of in terms of octonionic matrices, generalizing previous results in the case. Our treatment naturally includes a description of several important subgroups of , notably , , and (the double cover of) . An interpretation of the actions...
We define an operator α on ℂ³ ⊗ ℂ³ associated with the quantum group , which satisfies the Yang-Baxter equation and a cubic equation (α² - 1)(α + q²) = 0. This operator can be extended to a family of operators on with 0 ≤ j ≤ n - 2. These operators generate the cubic Hecke algebra associated with the quantum group . The purpose of this note is to present the construction.