Displaying 1101 – 1120 of 2671

Showing per page

Note on analytic Moufang loops

Eugen Paal (2004)

Commentationes Mathematicae Universitatis Carolinae

It is explicitly shown how the Lie algebras can be associated with the analytic Moufang loops. The resulting Lie algebra commutation relations are well known from the theory of alternative algebras.

Novikov superalgebras with A 0 = A 1 A 1

Fuhai Zhu, Zhiqi Chen (2010)

Czechoslovak Mathematical Journal

Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with A 0 = A 1 A 1 and dim A 1 = 2 are of type N and give a class of Novikov superalgebras of type S with A 0 = A 1 A 1 .

Noyau de Cauchy-Szegö d'un espace symétrique de type Cayley

Mohammed Chadli (1998)

Annales de l'institut Fourier

Dans cet article, en utilisant les algèbres de Jordan euclidiennes, nous étudions l’espace de Hardy H 2 ( Ξ ) d’un espace symétrique de type Cayley = G / H . Nous montrons que le noyau de Cauchy-Szegö de H 2 ( Ξ ) s’exprime comme somme d’une série faisant intervenir la fonction c de Harish-Chandra de l’espace symétrique riemannien D = G / K , la fonction c de l’espace symétrique c -dual 𝒩 de et les fonctions sphériques de l’espace symétrique ordonné 𝒩 . Nous établissons, dans le cas où la dimension de l’algèbre de Jordan associée...

Octonion multiplication and Heawood’s map

Bruno Sévennec (2013)

Confluentes Mathematici

In this note, the octonion multiplication table is recovered from a regular tesselation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map.

Octonionic Cayley spinors and E 6

Tevian Dray, Corinne A. Manogue (2010)

Commentationes Mathematicae Universitatis Carolinae

Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group E 6 , and of its subgroups. We are therefore led to a description of E 6 in terms of 3 × 3 octonionic matrices, generalizing previous results in the 2 × 2 case. Our treatment naturally includes a description of several important subgroups of E 6 , notably G 2 , F 4 , and (the double cover of) S O ( 9 , 1 ) . An interpretation of the actions...

On a cubic Hecke algebra associated with the quantum group U q ( 2 )

Janusz Wysoczański (2010)

Banach Center Publications

We define an operator α on ℂ³ ⊗ ℂ³ associated with the quantum group U q ( 2 ) , which satisfies the Yang-Baxter equation and a cubic equation (α² - 1)(α + q²) = 0. This operator can be extended to a family of operators h j : = I j α I n - 2 - j on ( ³ ) n with 0 ≤ j ≤ n - 2. These operators generate the cubic Hecke algebra q , n ( 2 ) associated with the quantum group U q ( 2 ) . The purpose of this note is to present the construction.

Currently displaying 1101 – 1120 of 2671