Displaying 1941 – 1960 of 2676

Showing per page

The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI

Henrik Aratyn, Johan van de LEUR (2005)

Annales de l’institut Fourier

Equivalence is established between a special class of Painlevé VI equations parametrized by a conformal dimension μ , time dependent Euler top equations, isomonodromic deformations and three-dimensional Frobenius manifolds. The isomonodromic tau function and solutions of the Euler top equations are explicitly constructed in terms of Wronskian solutions of the 2-vector 1-constrained symplectic Kadomtsev-Petviashvili (CKP) hierarchy by means of Grassmannian formulation. These Wronskian solutions give...

The triple-norm extension problem: the nondegenerate complete case.

A. Moreno Galindo (1999)

Studia Mathematica

We prove that, if A is an associative algebra with two commuting involutions τ and π, if A is a τ-π-tight envelope of the Jordan Triple System T:=H(A,τ) ∩ S(A,π), and if T is nondegenerate, then every complete norm on T making the triple product continuous is equivalent to the restriction to T of an algebra norm on A.

The variety of dual mock-Lie algebras

Luisa M. Camacho, Ivan Kaygorodov, Viktor Lopatkin, Mohamed A. Salim (2020)

Communications in Mathematics

We classify all complex 7 - and 8 -dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex 9 -dimensional dual mock-Lie algebras.

The Variety of Leibniz Algebras Defined by the Identity x(y(zt)) ≡ 0

Abanina, L., Mishchenko, S. (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99, 17B01, 17B30, 20C30Let F be a field of characteristic zero. In this paper we study the variety of Leibniz algebras 3N determined by the identity x(y(zt)) ≡ 0. The algebras of this variety are left nilpotent of class not more than 3. We give a complete description of the vector space of multilinear identities in the language of representation theory of the symmetric group Sn and Young diagrams. We also show that the...

The wedge sum of differential spaces

Sasin, Wiesław (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]Differential spaces, whose theory was initiated by R. Sikorski in the sixties, provide an abstract setting for differential geometry. In this paper the author studies the wedge sum of such spaces and deduces some basic results concerning this construction.

The Wells map for abelian extensions of 3-Lie algebras

Youjun Tan, Senrong Xu (2019)

Czechoslovak Mathematical Journal

The Wells map relates automorphisms with cohomology in the setting of extensions of groups and Lie algebras. We construct the Wells map for some abelian extensions 0 A L π B 0 of 3-Lie algebras to obtain obstruction classes in H 1 ( B , A ) for a pair of automorphisms in Aut ( A ) × Aut ( B ) to be inducible from an automorphism of L . Application to free nilpotent 3-Lie algebras is discussed.

Currently displaying 1941 – 1960 of 2676