Displaying 61 – 80 of 534

Showing per page

Cohomology of Hom-Lie superalgebras and q -deformed Witt superalgebra

Faouzi Ammar, Abdenacer Makhlouf, Nejib Saadaoui (2013)

Czechoslovak Mathematical Journal

Hom-Lie algebra (superalgebra) structure appeared naturally in q -deformations, based on σ -derivations of Witt and Virasoro algebras (superalgebras). They are a twisted version of Lie algebras (superalgebras), obtained by deforming the Jacobi identity by a homomorphism. In this paper, we discuss the concept of α k -derivation, a representation theory, and provide a cohomology complex of Hom-Lie superalgebras. Moreover, we study central extensions. As application, we compute derivations and the second...

Cohomology ring of n-Lie algebras.

Mikolaj Rotkiewicz (2005)

Extracta Mathematicae

Natural graded Lie brackets on the space of cochains of n-Leibniz and n-Lie algebras are introduced. It turns out that these brackets agree under the natural embedding introduced by Gautheron. Moreover, n-Leibniz and n-Lie algebras turn to be canonical structures for these brackets in a similar way in which associative algebras (respectively, Lie algebras) are canonical structures for the Gerstenhaber bracket (respectively, Nijenhuis-Richardson bracket).

Commutator algebras arising from splicing operations

Sergei Sverchkov (2014)

Open Mathematics

We prove that the variety of Lie algebras arising from splicing operation coincides with the variety CM of centreby-metabelian Lie algebras. Using these Lie algebras we find the minimal dimension algebras generated the variety CM and the variety of its associative envelope algebras. We study the splicing n-ary operation. We show that all n-ary (n > 2) commutator algebras arising from this operation are nilpotent of index 3. We investigate the generalization of the splicing n-ary operation, and...

Composition-diamond lemma for modules

Yuqun Chen, Yongshan Chen, Chanyan Zhong (2010)

Czechoslovak Mathematical Journal

We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and “double-free” left modules (that is, free modules over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra s l 2 , the Verma module over a Kac-Moody algebra, the Verma module...

Congruences and ideals in ternary rings

Ivan Chajda, Radomír Halaš, František Machala (1997)

Czechoslovak Mathematical Journal

A ternary ring is an algebraic structure = ( R ; t , 0 , 1 ) of type ( 3 , 0 , 0 ) satisfying the identities t ( 0 , x , y ) = y = t ( x , 0 , y ) and t ( 1 , x , 0 ) = x = ( x , 1 , 0 ) where, moreover, for any a , b , c R there exists a unique d R with t ( a , b , d ) = c . A congruence θ on is called normal if / θ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on and establish connections between ideals (introduced earlier by the third author) and congruence kernels.

Conservative algebras and superalgebras: a survey

Yury Popov (2020)

Communications in Mathematics

We give a survey of results obtained on the class of conservative algebras and superalgebras, as well as on their important subvarieties, such as terminal algebras.

Currently displaying 61 – 80 of 534