Une cohomologie pour les algèbres de Lie de Poisson homogènes
We classify the irreducible components of varieties of modules over tubular algebras. Our results are stated in terms of root combinatorics. They can be applied to understand the varieties of modules over the preprojective algebras of Dynkin type 𝔸₅ and 𝔻₄.
By allowing the coproduct to be non-unital and weakening the counit and antipode axioms of a C*-Hopf algebra too, we obtain a selfdual set of axioms describing a coassociative quantum group, that we call a weak C*-Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. It is the same structure that can be obtained by replacing the multiplicative unitary of Baaj and Skandalis with a partial isometry. The algebraic properties, the existence of...
Let G be a finite group. Consider the algebra A of all complex functions on G (with pointwise product). Define a coproduct Δ on A by Δ(f)(p,q) = f(pq) where f ∈ A and p,q ∈ G. Then (A,Δ) is a Hopf algebra. If G is only a groupoid, so that the product of two elements is not always defined, one still can consider A and define Δ(f)(p,q) as above when pq is defined. If we let Δ(f)(p,q) = 0 otherwise, we still get a coproduct on A, but Δ(1) will no longer be the identity in A ⊗ A. The pair (A,Δ)...
We give a survey of techniques from quantum group theory which can be used to show that some quantum spaces (objects of the category dual to the category of C*-algebras) do not admit any quantum group structure. We also provide a number of examples which include some very well known quantum spaces. Our tools include several purely quantum group theoretical results as well as study of existence of characters and traces on C*-algebras describing the considered quantum spaces as well as properties...