Extension of the Poincaré symmetry and its field theoretical implementation.
We study (non-abelian) extensions of a given hom-Lie algebra and provide a geometrical interpretation of extensions, in particular, we characterize an extension of a hom-Lie algebra by another hom-Lie algebra and discuss the case where has no center. We also deal with the setting of covariant exterior derivatives, Chevalley derivative, Maurer-Cartan formula, curvature and the Bianchi identity for the possible extensions in differential geometry. Moreover, we find a cohomological obstruction...
In this communication, I recall the main results [BDK1] in the classification of finite Lie pseudoalgebras, which generalize several previously known algebraic structures, and announce some new results [BDK2] concerning their representation theory.
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956–973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956–973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956–973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
The main goal of this paper is to give a mathematical foundation, serious and consistent, to some parts of Santilli?s isotheory. We study the isotopic liftings of groups and subgroups and we also deal with the differences between an isosubgroup and a subgroup of an isogroup. Finally, some links between this isotheory and the standard groups theory, referred to representation and equivalence relations among groups are shown.