Ideals of finite codimension in contact Lie algebra.
We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of n×n matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert...
L’indice d’une algèbre de Lie algébrique complexe est la codimension minimale de ses orbites coadjointes. Si est semi-simple, son indice, , est égal à son rang, . Le but de cet article est d’établir une formule générale pour l’indice de pour nilpotent, où est le normalisateur dans du centralisateur de . Plus précisément, on obtient le résultat suivant, conjecturé par D. Panyushev :où est le centre de . Panyushev obtient l’inégalité dans Panyushev 2003 et on montre que la maximalité...
In this paper, we construct a hyperkähler structure on the complexification of any Hermitian symmetric affine coadjoint orbit of a semi-simple -group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of . By a relevant identification of the complex orbit with the cotangent space of induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on compatible with...